
ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality

Chanyoung Jung∗
Yonsei University

Seoul, Republic of Korea
cy.jung@yonsei.ac.kr

Jeho Lee∗
Yonsei University

Seoul, Republic of Korea
jeholee@yonsei.ac.kr

Gunjoong Kim
Yonsei University

Seoul, Republic of Korea
gunjoong.kim@yonsei.ac.kr

Jiwon Kim
Uppsala University
Uppsala, Sweden

jiwon.kim@angstrom.uu.se

Seonghoon Park
Yonsei University

Seoul, Republic of Korea
park.s@yonsei.ac.kr

Hojung Cha†
Yonsei University

Seoul, Republic of Korea
hjcha@yonsei.ac.kr

Abstract
Mobile Augmented Reality (AR) applications demand high-quality,
real-time visual prediction, including pixel-level depth and seman-
tics, to enable immersive and context-aware user experiences. Re-
cently, Vision Foundation Models (VFMs) offer strong generaliza-
tion capabilities on diverse and unseen data, supporting scalable
mobile AR experiences. However, deploying VFMs on mobile de-
vices is challenging due to computational limitations, particularly in
maintaining both prediction accuracy and real-time performance. In
this paper, we present ARIA, the first system that enables on-device
inference acceleration of a VFM. ARIA employs the heterogene-
ity of mobile processors through a parallel and selective inference
scheme: full-frame prediction is periodically offloaded to a proces-
sor with high parallelism capability like GPU, while low-latency
updates on dynamic regions are conducted via a specialized accel-
erator like NPU. Implemented and evaluated using mobile devices,
ARIA achieved significant improvements in accuracy and deadline
success rate on diverse real-world mobile AR scenarios.

CCS Concepts
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Computer vision.

Keywords
Mobile Augmented Reality, Vision Foundation Model, On-device
AI, Heterogeneous Mobile Processors

∗Co-primary authors with equal contribution.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1453-5/2025/06
https://doi.org/10.1145/3711875.3729161

ACM Reference Format:
Chanyoung Jung, Jeho Lee, Gunjoong Kim, Jiwon Kim, Seonghoon Park,
and Hojung Cha. 2025. ARIA: Optimizing Vision Foundation Model Infer-
ence on Heterogeneous Mobile Processors for Augmented Reality. In The
23rd Annual International Conference on Mobile Systems, Applications and
Services (MobiSys ’25), June 23–27, 2025, Anaheim, CA, USA. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3711875.3729161

1 Introduction
Mobile Augmented Reality (AR) applications involve fundamental
vision tasks to extract pixel-level information, such as depth and
semantics, from camera frames. For example, depth information
is essential for the realistic placement of virtual objects, reflect-
ing physical relationships (e.g., occlusion) with real-world objects.
Additionally, semantic information facilitates context-aware AR
experiences, e.g., providing auxiliary visual cues highlighting safety-
critical areas like crosswalks to assist visually impaired individu-
als. Recent AR frameworks [15, 33] have employed Deep Neural
Network (DNN) models to retrieve such information from camera
frames accurately. For an immersive and responsive user experi-
ence, these frameworks have also supported real-time processing,
e.g., 30 frames per second (FPS), of models on mobile devices.

In AR applications, the environment in which users interact
is continuously changing due to the movements of the users or
surrounding objects. However, traditional DNN models in exist-
ing frameworks are typically designed for limited use cases. For
example, ARCore’s Scene Semantics API only supports outdoor
scenarios [18]. Moreover, these models must be robust against do-
main shifts, such as changes in lighting conditions, weather, and
spatial complexity. In general, these models are trained on specific
datasets with limited environmental contexts, making them sus-
ceptible to accuracy degradation when exposed to domain shifts
during mobile AR sessions. One simple approach to addressing the
issue is to deploy multiple models trained on different datasets,
which is impossible for mobile devices with limited memory capac-
ity. Recent studies have focused on employing domain adaptation
techniques [10, 43], which update the model parameters to adapt to
environmental changes. However, these methods incur significant
latency overhead on mobile devices, reducing their computational
budget to perform the main inference tasks.

A promising alternative is to utilize models trained on large-scale
datasets encompassing diverse environmental conditions. Vision

https://doi.org/10.1145/3711875.3729161
https://doi.org/10.1145/3711875.3729161

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

Input image FastDepth (DSM) AdaBins (DSM) DINOv2+DPT (VFM)

Input image PSPNet (DSM) DeepLabV3+ (DSM) DINOv2+Mask2Former (VFM)

M
et

ric
 D

ep
th

E

st
im

at
io

n
S

em
an

tic

S
eg

m
en

ta
tio

n

60 m

40 m

20 m

traffic
light

car
truck
bus
plant
tree
bridge
sky
road

…

Figure 1: Predictions from domain-specific models (DSMs) and vision foundation models (VFMs) on unseen MARV dataset.

Transformers (ViTs) [9] significantly outperformed traditional vi-
sion models, such as Convolutional Neural Networks (CNNs), in
handling large-scale datasets through their ability to capture com-
plex spatial relationships in images. ViTs trained on large-scale
datasets have led to the emergence of Vision Foundation Models
(VFMs). VFMs such as Segment Anything [24] and Depth Any-
thing [58], typically consisting of hundreds of millions of param-
eters, demonstrate strong generalization (zero-shot) capabilities
on data beyond their training sets (see Figure 1). This suggests
that leveraging VFMs for mobile AR applications is a promising
direction to enable scalable and immersive experiences.

Despite such opportunities, efforts to successfully deploy VFMs
on mobile devices remain largely unexplored. Our preliminary
observations indicate that maintaining high computational fi-
delity—such as input resolution and arithmetic precision—is crucial
for preserving the generalization ability of VFMs on unseen data.
However, due to the operational characteristics of ViTs, the larger
data sizes resulting from high computational fidelity introduce pro-
hibitive inference latency on mobile processors. Although mobile
processors with high parallelism capabilities, such as GPUs, can al-
leviate the issue, meeting the stringent latency requirement remains
challenging. Conversely, lowering computational fidelity enables
significant inference acceleration on processors like NPUs opti-
mized for small-sized data processing with specialized hardware.
This achieves the strict latency requirement but at the expense
of a noticeable accuracy drop. As a result, these single-processor
baselines, high-fidelity operations on GPUs or low-fidelity oper-
ations on NPUs, fall short of satisfying both high-accuracy and
low-latency requirements.

In this paper, we present ARIA, a system to enable resource-
efficient on-device inference of VFMs for immersive and scalable
mobile AR applications. The goal of ARIA is to maintain high-
quality prediction of VFMs in real-time, e.g., 30 FPS, on mobile
devices. The key idea of ARIA is to employ the unique capabili-
ties of heterogeneous mobile processors in a parallel and selective
manner. Specifically, high-resolution predictions on camera frames
are periodically generated using GPU, suitable for processing large-
scale inputs. Concurrently, fast, low-resolution operations on NPU
are selectively applied to dynamic regions within the frames, where
frequent updates are essential, e.g., moving objects. This approach

effectively combines GPU’s capacity for full-frame prediction with
NPU’s efficiency in providing local, up-to-date inferences, opening
up new opportunities for high-quality, real-time VFM processing.

Despite the potential of utilizing heterogeneous processors, re-
alizing the goal of achieving both high accuracy and responsive-
ness on mobile devices faces several challenges. First, accurately
identifying and efficiently processing dynamic regions within cam-
era frames is non-trivial, especially without relying on compute-
intensive pixel-level analysis like optical flow or coarse-grained
block-level matching [55]. Second, simply combining local updates
fromNPUwith periodic full-frame predictions fromGPU introduces
spatial and temporal misalignment. The visual inconsistencies se-
verely degrade user experiences, e.g., by disrupting virtual content
rendering, where a precise understanding of a scene is necessary.
Lastly, maintaining real-time performance is further complicated
by changes in processor performance, device motion, and scene
dynamicity.

For efficient identification and processing of dynamic regions,
ARIA proposes to analyze the temporal differences in each image
patch (e.g., 16×16 pixels). This enables fine-grained identification
of dynamic regions while minimizing the inclusion of irrelevant
static areas, effectively bridging the gap between pixel and block
granularities. Since VFMs provide the distinctive visual features
of patches, ARIA leverages this information as guidance, enabling
accurate identification and tracking of dynamic regions. For the
second challenge of addressing spatial and temporal mismatches in
decoupled predictions, ARIA introduces feature alignment modules
informed by the key dynamics in mobile AR scenarios: camera mo-
tion and object motion. Finally, ARIA employs a dynamic inference
scheme that adaptively adjusts the executions of GPU and NPU in
response to changing runtime factors, achieving the accuracy and
latency requirements of AR applications.

The key contributions of ARIA are as follows:
• To the best of our knowledge, ARIA is the first system de-
signed to accelerate high-quality VFM inference on mobile
devices, enabling scalable, immersive AR experiences.

• Along with a comprehensive study of VFM inference work-
loads on heterogeneous mobile processors, we propose a
novel parallel and selective VFM inference scheme with so-
lutions that address unique challenges.

ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Table 1: Prediction performance on unseen datasets.

Metric depth estimation on our MARV dataset
Type Model (Training Dataset) RMSE ↓ Params.

DSM FastDepth [63] (NYUv2) 6.61 4.0M
AdaBins [2] (KITTI) 5.53 78.3M

VFM* DINOv2+DPT 2.04 24.8M
Semantic segmentation on Cityscapes dataset

Type Model (Training Dataset) mIoU ↑ Params.

DSM PSPNet [65] (ADE20K) 0.36 13.7M
DeepLabV3+ [4] (ADE20K) 0.45 43.7M

VFM* DINOv2+Mask2Former 0.56 57.2M
*VFMs are pre-trained on a large corpus of existing datasets,
and then are fine-tuned to Hypersim [42] and ADE20K [66]
datasets to support MDE and SS, respectively.

• ARIA is fully implemented as an end-to-end system using
commodity mobile devices and extensively evaluated on a
self-collected dataset for mobile visual AR tasks.

2 Background and Motivation
2.1 Recent Advances in Vision Models
With the advent of Transformers in general-purpose language mod-
els, their extension to vision tasks has become pervasive. Vision
Transformers (ViTs) divide images into small patches (e.g., 16×16
pixels), similar to words in language Transformers, and use the
attention mechanism to capture long-range dependencies between
these patches [9]. ViTs offer more effective global context under-
standing compared to traditional CNNs, enhancing prediction ac-
curacy across a range of vision tasks.

Vision Foundation Models (VFMs), developed alongside ViT
training techniques using large-scale datasets, have emerged as
a new mainstream in foundation models (FMs) for general-purpose
visual understanding tasks. A line of VFMs, such as CLIP [40],
supports tasks that require text-image understanding, like image
captioning, which is known as multimodal FMs. Another line of
VFMs especially focuses on visual modality, providing high-quality,
dense visual predictions. The DINO [3, 36] series, pioneers of these
models, utilizes self-supervised learning to minimize an extensive
labeling effort for large-scale data. These models offer rich visual
features that are highly versatile for various downstream vision
tasks. Recent VFMs use these models as encoders and train task-
specific decoders to support various fine-grained vision tasks. For
instance, Depth Anything [52] was trained on 62M images, support-
ing general-purpose depth estimation. Similarly, Meta’s Segment
Anything [24] shows strong image segmentation performance for
any type of object.

2.2 Advantages of VFMs in Mobile AR
In real-world mobile AR scenarios, users typically navigate environ-
ments with varying lighting conditions and surrounding objects.
However, traditional models trained on domain-specific datasets
often exhibit poor generalization abilities in new scenarios that
were not included during training. Unlike these domain-specific
models (DSMs), VFMs effectively handle environmental shifts by

� � 	 � � � � �
 � � �
 � � � � � � � 	

�

�

�

�

�

�

�

�

	

�
�

�
�

�	
��

�
�

� �
 � � � � �
 � � � � � 	 � �

(a) Accuracy (H×W)
� � 	 � � � � �
 � � �
 � � � � � � � 	

�
� �
� �

 �

� � �
� � �
� 	 �
� � �
� � �
� � �
� � �

�
�

��
	

�
�

��
�

�

� � � � � � � �

� � � � � � � �

�
 � � � � � �

�
 � � 	
 � �

(b) Latency (H×W)

Figure 2: Accuracy and latency comparison across different
computational fidelities and mobile processors on Samsung
Galaxy S24.

(a) FP32 (b) FP16 (c) INT8

Figure 3: Visual comparison of metric depth estimation.

providing superior zero-shot predictions on unseen data, without
requiring additional model fine-tuning.

To compare the generalization capabilities of VFMs and DSMs,
we conducted experiments on two key vision tasks in mobile AR:
metric depth estimation (MDE) and semantic segmentation (SS). To
quantify the zero-shot prediction accuracy, we used a self-collected
MARV dataset (see Section 6.1) and the public Cityscapes dataset [7]
for MDE and SS, respectively. VFMs used DINOv2 [36] as a visual
feature encoder, with DPT [41] and Mask2Former [6] as decoders to
produce final results for MDE and SS, respectively. For comparison,
we selected popular DSMs for each vision task, varying in their
number of parameters and training datasets.

Table 1 shows the zero-shot prediction performance of the mod-
els on unseen datasets. The results indicate that VFMs achieved
an average of 2.1× and up to 3.2× higher accuracy compared to
DSMs. Moreover, despite having 3.1× fewer parameters than Ad-
aBins, DINOv2+DPT outperformed by a large margin of 2.7× in
accuracy, highlighting the importance of training with large-scale
datasets. Example results shown in Figure 1 demonstrate that VFMs
produce visual predictions with the highest quality. These predic-
tions enhance downstream AR functionalities, such as placements
of virtual overlays or user interactions, where fine-grained and
accurate predictions of physical objects are crucial.

2.3 VFM Inference on Mobile Processors
To enable truly immersive mobile AR applications, the VFM infer-
ence task should be performed in real-time, e.g., 30 FPS. However,
VFMs demand high computational resources on mobile devices,
due to their large number of parameters (see Table 1) and compute-
intensive ViT operations. To analyze the complexity of on-device
VFM inference workloads, we conducted preliminary experiments
using modern mobile processors such as GPU and NPU widely
adopted for NN inference acceleration. For our experiments, we
used a Samsung Galaxy S24 with Adreno 750 GPU and Hexagon
NPU.

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

� � �
 � � � � 	 �
 � 	 � � � �
 � � �

�

�

� �

� �

� �

� �

�
�

��
	

�
�

��
�

�

� � � � �

� � � � 	 � �

� � � � � � � � � 	

� � 	 � � � � 	 �

� � �
 � � � �

� � � � � �

(a) GPU (H×W)
� � �
 � � � � 	 �
 � 	 � � � �
 � � �

�

�

� �

� �

� �

� �

�
�

��
	

�
�

��
�

�

(b) NPU (H×W)

Figure 4: Latency breakdown of a FP16 ViT layer on Samsung
Galaxy S24.

Table 2: Memory access breakdown (MB) for a NPU FP16 ViT
layer on Samsung Galaxy S24.

H×W Matmul Softmax Reshape Transpose Linear Misc

238×322 31.99 4.15 2.72 12.06 26.66 28.60
294×490 73.82 13.00 3.39 19.22 64.67 51.84
406×658 1664.55 395.80 35.36 37.37 225.83 202.52

In fine-grained visual prediction tasks, computational fidelity,
such as input resolution and arithmetic precision, is a critical fac-
tor that influences model accuracy and inference speed on mo-
bile processors. Figure 2 shows the impact of changes in compu-
tational fidelity on (i) MDE accuracy of DINOv2+DPT on MARV
dataset and (ii) latency on different mobile processors. NPUs are
highly optimized for accelerating integer (INT) operations, with
NPU INT8 achieving an average 5.1× speedup compared to other
settings. However, ViTs include operations sensitive to INT data
format, such as attention and layer normalization, leading to signif-
icant accuracy degradation compared to floating-point (FP) opera-
tions [32, 54]. Moreover, the accuracy drops become more severe at
higher resolutions as the quantization errors are amplified due to an
increased number of such operations. For example, as shown in Fig-
ure 2a, NPU INT8 resulted in a 3.6× accuracy drop at a resolution
of 406×658, where Figure 3 shows the visual comparison.

Fortunately, modern mobile NPU architectures have increasingly
supported FP operations (e.g., FP16 on QualcommHexagon NPU) to
meet the growing demands [46]. Despite being hardware-optimized
for accelerating INT operations, they can achieve real-time FP16
computation on low-resolution inputs. For example, as shown in
Figure 2b, NPU FP16 incurs a latency of 10.0 ms at a low resolution
of 238×322. However, the latency of NPU FP16 increased sharply
with higher input resolution—a limitation that GPUs can alleviate
due to their better parallel processing capabilities for handling
large-scale data. Specifically, at a high resolution of 406×658, GPU
FP16 achieves 2.0× lower latency compared to NPU FP16.

Figure 4 shows the latency breakdowns of a single FP16 ViT
layer on both GPU and NPU, further demonstrating the hardware
differences. Notably, the increasing latency of key operations in
the attention mechanism—MatMul and Softmax—is much more
significant on NPU compared to GPU. This is due to the complexity
of inter-patch computations in the attention mechanism, scaling
quadratically as 𝑂 (𝑁 2), where 𝑁 denotes the number of input
patches in ViTs, combined with the limited parallelism and on-chip
memory capacity of NPUs. Consequently, high-resolution attention
operations become memory-bound on NPUs, leading to substantial

FP16 FP16 FP16

GPU

NPU FP16… ..
..FP16 FP16

CPU
Reuse

Merge

Frame interval

Dynamic
regions

…

Figure 5: Parallel and selective execution using heteroge-
neous mobile processors.

latency overhead for memory read/write. Table 2 further quantifies
this issue, showing the rapid increase in memory access at higher
input resolutions. Specifically, Matmul and Softmax operations at
406×658 require 52.0× and 95.4× more memory access compared
to 238×322, respectively.

2.4 Summary
We first observed that FP operations are essential to avoid severe
accuracy loss in VFMs. We did not consider full-precision opera-
tions (i.e., FP32) as they offer minor accuracy improvements over
FP16. While NPU FP16 enabled real-time VFM inference at low
resolutions, it naturally suffered from accuracy degradation due to
image resizing. High-resolution FP16 operations address this issue,
and the increased latency of processing larger data is alleviated to
some extent with the strong parallelism capabilities of GPU but still
fails to meet the stringent latency requirements (e.g., 30 FPS). As a
result, these single-processor baselines—low-resolution operations
on NPU or high-resolution operations on GPU—cannot satisfy the
demands for both accuracy and latency. This motivates us to design
a system that effectively combines unique characteristics of NPU
and GPU on floating-point operations to meet the requirements.

3 Opportunities and Challenges
3.1 Opportunities
Based on our observations, we derived a key idea to achieve real-
time performance of a VFM without a significant accuracy loss, as
depicted in Figure 5. A GPU periodically generates high-resolution
visual predictions for the entire camera frames, which are reused
in the next few frames. Concurrently, an NPU selectively processes
dynamic regions (e.g., moving objects) within each frame, where
frequent, up-to-date predictions are essential. Note that these lo-
cal predictions are generated without the loss of details caused
by image resizing, avoiding the accuracy drops observed in Fig-
ure 2a. Finally, the local updates from NPU are integrated into the
latest full-frame prediction from GPU. This strategy effectively de-
livers high-quality VFM predictions in real-time, by leveraging the
strengths of heterogeneous mobile processors: the GPU’s capabil-
ity to handle large-scale input data and the NPU’s efficiency in
small-data processing.

ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Figure 6: Inconsistencies in decoupled predictions (NPU: dy-
namic regions highlighted by a box, GPU: entire frame).

� � � � � � � � � � � � � 	 � �
 � � � � �

�

� � �

� � �

� � �

� � �

	 � �

�
�

��
	

�
�

��
�

�

� � � � � � �

� � � � � � �
 � � � �
 �
 	 � � � � � � � � � � �
 � � � � � � � � � � � � � � � � � � �
 � � � � � � � � � �

Figure 7: Runtime traces of inference latencies on Samsung
Galaxy S24. The two GPU executions were profiled in sep-
arate experiments, while NPU was executed concurrently
with both.

3.2 Challenges
Realizing the above strategy to enable real-time processing of VFMs
on resource-constrained mobile devices is accompanied by the
following three challenges:

Accurate and efficient processing of dynamic regions. For a re-
liable update of dynamic regions in the latest full-frame prediction,
accurate identification of those regions is critical. However, employ-
ing DNN-based object detection and tracking or dense optical flow
can result in significant latency on mobile devices. Furthermore,
existing selective inference methods [49, 55] rely on rectangular
blocks to identify the dynamic regions as shown in Figure 5. Such
coarse-grained selection mechanisms often include irrelevant static
areas, reducing efficiency in dynamic region processing.

Spatial and temporal inconsistencies across decoupled pre-
dictions. The local updates from NPU and the latest full-frame
prediction from GPU must be seamlessly merged for subsequent
AR functionalities. However, processing only a fraction of the frame
risks underutilizing a ViT’s ability for global understanding, poten-
tially leading to spatial inconsistencies between local and full-frame
predictions. For example, as shown in Figure 6, simply merging
these decoupled predictions results in visual inconsistency. Addi-
tionally, since full-frame predictions on GPU are performed periodi-
cally, the merged results without considering scene changes caused
by camera motion—common in mobile AR—lead to temporal mis-
matches. Therefore, a method to effectively address these spatial
and temporal inconsistencies is essential.

Dynamic changes in processor performance, camera motion,
and scene complexity. Achieving real-time execution of a VFM
on mobile devices becomes even more challenging due to various
runtime factors. First, continuously running the high-resolution
VFM inference on mobile GPU often leads to performance degrada-
tion due to system-level decisions such as thermal throttling. As
shown in Figure 7, the latency of GPU FP16 is increased up to 3.7×

(§4.2) Dynamic Region
Identification and Tracking

VFM
Encoder

Similarity
Analysis

Tracking

NPU Thread

GPU Thread C
ac

he

Dynamic
Regions

Full-frame

Visual
Features

(§4.3)
Spatio-

temporal
Alignment
Modules

R
eu

se

Schedule

Camera
Stream

Final
Outputs

VFM
Decoder

(§4.4) Execution Scheduling

Latency
profiles

Scene
Dynamicity

Camera
Motion

Figure 8: Overview of ARIA.

during runtime due to the thermal issue. This can be mitigated by
reducing the processing resolution of GPU FP16 or even eliminated
through low-resolution execution on NPU. Second, continuous
scene changes due to camera or object motion must be carefully
considered to meet the accuracy and latency requirements of AR
vision tasks. For example, rapid scene changes caused by abrupt
camera motion make periodic full-frame predictions from GPU
severely outdated, where large portions of them are not reusable.

4 Design of ARIA
4.1 System Overview
Motivated by our key insights, we present ARIA, a system that
supports real-time, on-device VFM inference formobile devices. The
design goal of ARIA is to leverage heterogeneous mobile processors
to achieve both inference speedup and accuracy improvement of
a VFM for mobile AR applications. Additionally, ARIA aims to be
generic, supporting various VFMs for critical AR vision tasks.

Figure 8 shows the system architecture of ARIA, which follows
the baseline workflow in Figure 5: parallel execution of periodic,
full-frame prediction on GPU and real-time update for dynamic
regions on NPU. ARIA utilizes patch-based representations to pro-
cess the dynamic regions in a fine-grained manner and seamlessly
merges the results with the latest full-frame prediction. To effi-
ciently and accurately identify the dynamic regions, ARIA employs
temporal similarity analysis based on visual features of patches,
which are the intermediate results of VFMs (Section 4.2.1). The
identified dynamic regions are propagated across frames by our
tracking method until the next full-frame prediction is available
from GPU (Section 4.2.2). NPU extracts visual features for the dy-
namic regions in each frame, which are then merged into the latest
full-frame feature map through spatio-temporal alignment mod-
ules (Section 4.3). The aligned feature map is then processed by a
task-specific decoder of VFM, generating the final prediction. Dur-
ing runtime, ARIA dynamically adapts to scene changes, abrupt
camera motion, and thermal throttling by scheduling the execution
of GPU and NPU to meet the demands of mobile AR applications
(Section 4.4).

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

4.2 Transformer-guided Dynamic Region
Identification and Tracking

Leveraging the NPU’s efficiency in small-data processing to selec-
tively update the dynamic regions in the latest full-frame prediction
helps maintain both high accuracy and responsiveness. To enable
precise and efficient processing of dynamic regions, a fine-grained
identification method is required that minimizes the inclusion of
irrelevant static regions. The key idea of ARIA is to determine dy-
namic regions by analyzing temporal differences at the granularity
of patches, which are the basic processing units of ViTs. This patch-
based approach is lightweight due to its use of low-dimensional
representations compared to pixels, e.g., 29×47 patches in a 406×658
image, and provides a natural way to leverage the patches’ visual
features generated by VFMs.

4.2.1 Dynamic region identification. To identify dynamic patches,
ARIA utilizes the patch embedding features generated from the VFM
encoder. As input patches pass through a sequence of ViT layers in
the encoder, such as attention, their embedding features inherently
capture contextual information (e.g., how patches are related to each
other) along with the visual and spatial characteristics. Leveraging
these distinctive and rich features makes it easy to detect temporal
differences in patches, improving identification robustness.

Figure 9 shows dynamic patch identification between the two
consecutive frames processed by GPU, i.e., frames 𝑡 − ΔGPU and
𝑡 . To identify dynamic patches 𝑃 (𝑡)

Dyn, ARIA uses cosine similarity
to determine the patch locations in the target frame 𝑡 that exhibit
significant temporal differences compared to the previous frame
𝑡 − ΔGPU:

𝑃
(𝑡)
Dyn =

{
𝑖 | 𝑠𝑖𝑚

(
𝑓
(𝑡−ΔGPU)→(𝑡)
𝑖

, 𝑓
(𝑡)
𝑖

)
< 𝜏

}
, (1)

where 𝑓
(𝑘)
𝑖

denotes the embedding features of patch location 𝑖 ∈
𝑃 (𝑘) at frame 𝑘 . Threshold 𝜏 is for ignoring dynamic patches with
minor changes, thereby adjusting the NPU’s workload to process
these patches. Temporal differences in each patch location can occur
not only from object movement but also from the camera’s motion
𝜃 (𝑡−ΔGPU)→(𝑡) . To compensate for camera motion and thereby only
consider object motion, ARIA warps the patches in 𝑓 (𝑡−ΔGPU) into
the target frame 𝑡 based on the estimated patch flow (Section 4.3.1).

As seen in the embedding features visualized in Figure 9, the
foreground objects and the backgrounds can be easily distinguished
at the encoder phase of VFMs [3], making significant temporal
differences in object boundaries. However, updating only these
boundary patches using NPU may fail to fully capture the changes
in object appearances. To ensure up-to-date predictions in the inner
regions of the moving objects, ARIA uses a convex hull algorithm
to group the identified dynamic patches and fill each group.

4.2.2 Dynamic region tracking. Unfortunately, dynamic patch iden-
tification using embedding features relies on the GPU’s full-frame
analysis, which has a processing interval ΔGPU longer than the
frame interval. Simply resizing each frame to a low resolution and
extracting embedding features using NPU is not feasible due to
excessive overheads and the possible identification failures caused
by loss of details. Therefore, ARIA proposes calculating motion

Frame (406 658)

Frame (406 658)

Warped
(29 47)

(29 47)
Patch embedding features

(Similarity)

Dynamic patches
(Filled)

Figure 9: Transformer-guided dynamic region identification
(patch size: 14×14, 𝜏 : 0.9).

information (e.g., moving direction and distance) for each identi-
fied dynamic region (i.e., group of dynamic patches) and tracking
their locations across continuous frames, until the next full-frame
feature embeddings become available. This is divided into two sub-
tasks: (i) matching dynamic patches between the two consecutive
frames processed by GPU (frames 𝑡−ΔGPU and 𝑡) and (ii) estimating
the future locations of dynamic regions by applying their motion
information.

For the first sub-task of dynamic patch matching, ARIA identifies
the corresponding patches 𝑃 (𝑡−ΔGPU)

Dyn at frame 𝑡−ΔGPU for dynamic

patches 𝑃 (𝑡)
Dyn at frame 𝑡 as follows:

𝑃
(𝑡−ΔGPU)
Dyn =

{
𝑗 | argmax

𝑗
𝑠𝑖𝑚

(
𝑓
(𝑡−ΔGPU)→(𝑡)
𝑗

, 𝑓
(𝑡)
𝑖Dyn

)}
,

∀𝑖Dyn ∈ 𝑃
(𝑡)
Dyn,

(2)

where 𝑗 ∈ 𝑃 (𝑡−ΔGPU) denotes each patch location at frame 𝑡 −ΔGPU.
For the second sub-task of estimating locations of dynamic regions
during the next full-frame processing interval, ARIA calculates the
motion vector (Δ𝑥,Δ𝑦) for each matched pair of dynamic patches
based on their displacements. Then, at each incoming frame, the
locations of dynamic regions are estimated by applying the average
motion vectors of the corresponding patches. The tracked dynamic
regions and their motion vectors are continuously updated based
on the newly extracted embedding features using NPU.

4.3 Dynamics-aware Spatio-temporal
Alignment of Decoupled Predictions

The final results of a VFM should be generated by ensuring tempo-
ral and spatial alignment of decoupled predictions—local updates
of dynamic regions from NPU and the latest high-resolution pre-
diction from GPU. First, a natural approach to achieving tempo-
ral alignment is to use warping based on camera motion infor-
mation. Achieving reliable pixel-level warping requires accurate
depth information [30], but the information is not always avail-
able since ARIA’s goal is to support various vision tasks beyond
depth estimation. The simplistic 2D planar transformation results
in visual mismatches with the actual scene due to parallax arti-
facts [28, 64], disrupting an immersive AR experience. Second, a

ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Adaptive padding

Dynamic
regions

Patch
motion
vectors
(§4.2.2)

..

MLP

MLP

Camera
motion

Concat

Patch
flow

Embedding
feature

VFM Decoder

Final output

VFM Encoder

W M

Warping

Masking

W

M

Figure 10: Spatio-temporal feature alignment.

straightforward method for spatial alignment is to merge local up-
dates for dynamic regions into the warped full-frame prediction
using interpolation [60]. However, this is vulnerable to alignment
errors in dynamic regions, particularly in cases of involving large
displacements caused by fast-moving objects near the camera.

ARIA proposes an accurate spatio-temporal feature alignment
method, which accounts for the two types of dynamics, i.e., camera
and object movements. Similar to Section 4.2, this approach relies
on intermediate patch features shared by VFMs rather than the
final predictions (e.g., depth maps), scalable to various vision tasks.
Figure 10 shows how the proposed spatio-temporal feature align-
ment modules are integrated into a VFM. First, each patch in the
latest full-frame feature map is warped into the current frame based
on patch flow estimation (Section 4.3.1). Next, the VFM encoder
extracts embedding features for dynamic regions judiciously ex-
tended by our adaptive padding (Section 4.3.2), supporting seamless
integration with the warped full-frame feature map. The aligned
embedding features are then passed to the task-specific decoder,
producing the final prediction results. In the following, we describe
the details of our alignment modules.

4.3.1 Patch flow estimation for temporal alignment. The latest full-
frame feature map generated by GPU at frame 𝑡GPU is reused at
each incoming frame 𝑡 , where 𝑡GPU < 𝑡 . Leveraging the temporal
similarity of continuous frames is a common approach to reduce
the computational workload of complex DNN execution [20, 55]. To
compensate for camera motion-induced temporal inconsistencies,
ARIA introduces a patch flow estimation module. This module uses
a Multi-Layer Perceptron (MLP) to predict the patch flow, repre-
senting the temporal displacement of each patch caused by the
camera’s motion. First, the camera motion 𝜃 (𝑡𝐺𝑃𝑈)→(𝑡) is trans-
formed into a latent embedding through an MLP to match the
dimensionality of the patch embedding features. The camera mo-
tion embedding is concatenated with the patch embedding features
and then passed through another MLP to generate the patch flows.
Finally, the patches are warped using the predicted flows. These
MLPs are optimized to predict accurate patch flows by learning the
temporal disparities based on the distinctive visual cues for patches
provided by VFMs.

4.3.2 Adaptive padding for spatial alignment. ARIA replaces the
dynamic regions in the warped full-frame feature map with features
newly extracted by NPU. Instead of employing additional neural

components, ARIA addresses spatial inconsistencies using an adap-
tive padding module. This module adds vertical and horizontal
padding of size 𝑠𝑝 around each dynamic region, enabling VFMs to
extract features with larger receptive fields. To do so, the relation-
ships between dynamic regions and surrounding areas (e.g., relative
depth scales) are well captured. To address the large displacement
from fast-moving objects where the initial padding cannot cover,
ARIA applies additional margins based on the moving trajectories
(i.e., motion vectors) of dynamic regions acquired by our tracking
method (Section 4.2.2). This allows for new observations on areas
that were previously occluded by moving objects.

4.4 Execution Scheduling
Mobile AR applications have diverse requirements in terms of exe-
cution latency and prediction accuracy of vision tasks. The system’s
runtime scheduler aims to ensure that the inference latency 𝐿 of a
VFM on a mobile device does not exceed the given latency target 𝐿𝑇
(e.g., 33 ms for 30 FPS), while maximizing the prediction accuracy
𝐴. The objective function of the scheduler is formulated as follows:

max𝐴, s.t. 𝐿 ≤ 𝐿𝑇 . (3)

The design of the scheduler includes the following components: (i)
defining the unique runtime factors of mobile AR scenarios that
impact system performance, (ii) developing a heterogeneous multi-
processor inference engine capable of adapting to the changes in
these factors, and (iii) establishing an execution policy to satisfy
the objective.

Understanding the relationship between the workload charac-
teristics using heterogeneous mobile processors and the runtime
factors in mobile AR is critical to achieving the scheduler’s goal.
As we discussed in Section 3, selectively inferring dynamic regions
on NPU exhibits low and stable latency, meaning the effective la-
tency 𝐿 for generating the final output of a VFM is determined by
NPU. Therefore, NPU’s workload must be configured to satisfy the
objective 𝐿 ≤ 𝐿𝑇 on a given device, considering scene dynamicity
attributed to the number and speed of dynamic patches. Unlike
NPU, the GPU’s full-frame inference workload exhibits variable
latency profiles at runtime due to thermal throttling. Prolonged
GPU execution frequency reduces the areas of the latest full-frame
feature map that can be reused, and this issue is exacerbated by
abrupt camera motion (e.g., large rotational movement). Conse-
quently, the GPU’s workload must be adjusted by accounting for
both camera motion and thermal throttling.

We developed a heterogeneous mobile-processor inference en-
gine capable of adapting to the dynamic runtime factors. The pro-
cessor assignments and execution flow of system components are
detailed in Figure 11. Full-frame VFM encoder inference is dele-
gated to GPU, while NPU handles other neural networks, such as
the dynamic region encoder. The CPU is responsible for the remain-
ing tasks (e.g., camera motion estimation) and orchestrating the
overall inference pipeline—managing input data and scheduling
GPU/NPU execution. During the offline phase, the engine profiles
the latency of full-frame encoder inference across multiple reso-
lution levels to prepare for runtime adjustments. This resolution
scaling mechanism compensates for GPU performance fluctuations
(due to thermal throttling) and abrupt camera motion. Additionally,
within the CPU-NPU execution flow, the engine determines the

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

Thermal
throttling

Abrupt
camera
motion

A

T

GPU

NPU
CPU

B
…

S T TB S T T

A AT

S

Priority-based NPU allocation

Dynamic region

1
3

Job

3 1

1 2

Priority

3 1 2> >

1 2 3> >

N: Number of cycle

2

Reactive GPU execution control

Base (B) 132

Small (S) 92 158

Resolution Latency (ms)

Tiny (T) 60 90
Camera
motion

Historical motion
magnitude

Low High

Selector

Se
T

T

Dyn. region
iden./track.

Dyn. region
encoder

Decoder

Camera
motion est.

Patch
flow est.

Feature
warping

N

Schedule & Data flow

NPU
CPU

Figure 11: Heterogeneous multi-processor inference engine.

maximum number of the dynamic region encoder cycles that can
be executed within the remaining latency budget, considering 𝐿𝑇
and profiled latencies of other static operations. Since most mobile
DNN inference frameworks do not support dynamic input shape
[35], each execution cycle has a fixed size of input patches.

To achieve the goal of maximizing accuracy while adhering to
the target latency 𝐿𝑇 , the inference engine employs two schedul-
ing policies for the decoupled VFM encoder inference workloads:
priority-based NPU allocation and reactive resolution selection for
GPU execution. First, as not all dynamic regions in a frame can
be processed within the predefined number of cycles, the engine
determines their NPU delegation order based on priority. The pri-
ority of the dynamic region is decided by its moving speed, i.e.,
the magnitude of the motion vector calculated via dynamic region
tracking. The rationale behind this is that up-to-date predictions
for fast-moving objects are critical to minimizing user discomfort
caused by visual misalignment between the objects and their vir-
tual overlays [27]. Dynamic regions that are not processed in the
current frame will be prioritized in the next frame. These regions
are compensated by our tracking and adaptive padding methods,
considering their updated locations and moving trajectories.

Second, as shown in the example runtime traces in Figure 11, the
engine adjusts GPU’s full-frame inference workload in response to
camera motion and thermal throttling. When abrupt camera motion
causes rapid scene changes, the engine resizes the frame resolu-
tion to a lower level, reducing the latency of GPU. The resolution
selection criterion is based on the history of the camera motion
magnitude during the user session. The magnitude is calculated
as a weighted sum of translation and rotation magnitudes, where
rotation is more prioritized since it causes drastic scene changes
compared to translation. The engine maintains the historical mag-
nitudes over a certain period and divides them into levels equal
to the number of resolution levels, enabling a simple mapping be-
tween the current motion magnitude and the target resolution.
Meanwhile, since predicting the performance changes based on a
device’s thermal states is impractical, the engine monitors the laten-
cies of resolution levels and updates their profiles when significant
deviations due to thermal throttling are detected. Although these
reactive policies are feasible, exploring a more sophisticated policy
that involves the intricate modeling of the relationship between the

system performance and camera motion/thermal states remains a
valuable area for future work.

5 Implementation
We implemented ARIA using C++ (Android NDK v25) and Java
(Android API). We used Qualcomm Snapdragon platforms due to
their popularity and floating-point computation capabilities with
NPU. All neural networks in ARIA were converted to TensorFlow
Lite (TFLite) 2.16.0 [17] models and executed using the TFLite C++
library. We used TFLite GPU Delegate [16] for GPU inference and
QualcommNeural Network (QNN) Delegate [39] for NPU inference.

In our current implementation, the initial resolution levels for
full-frame inference on the GPU are the same as those depicted in
Figure 2, but they can be adjusted as needed. The patch size used
for dynamic region identification and tracking relies on the input
patch size of a given VFM, typically 14×14 or 16×16 pixels. The
MLPs used for patch flow estimation were developed in PyTorch
and trained on a subset of our MARV dataset, consisting of 25K
images across multiple videos with diverse camera motion patterns.
The training loss was calculated as a mean squared error (MSE)
between the actual feature map and the feature map warped to
the target frame using estimated patch flows. For camera motion
estimation, we employed the Camera Pose API from ARCore [1].

6 Evaluation
We evaluated the prediction accuracy and system performance of
ARIA on a large-scale dataset for mobile AR vision tasks. Experi-
ments were conducted using Samsung Galaxy smartphones with
Qualcomm Snapdragon 8 Gen APs, including Galaxy S22 (8 Gen
1 with Adreno 730 GPU and Hexagon 780 DSP) and S24 (8 Gen 3
with Adreno 750 GPU and Hexagon NPU).

6.1 Evaluation Setup
Dataset.We created a custom dataset due to the lack of publicly
available datasets that (i) support multiple visual prediction tasks for
mobile AR, (ii) capture realistic camera movements across diverse
environments, and (iii) provide 6 degrees of freedom (6DoF) camera
pose information. To collect the data, we built a sensor rig using a
smartphone and a ZED 2 stereo depth camera [44]. We collected
video sequences from various indoor and outdoor spaces, includ-
ing streets and campuses, capturing diverse camera motions and
object interactions. During collection, the smartphone estimated
camera poses using ARCore [1], while the ZED 2 camera produced
ground-truth depth maps. For each captured RGB image, we gen-
erated pseudo-labels for pixel-level semantics using a cloud-scale
VFM (556M parameters) with DINOv2 encoder (ViT-Large) and
Mask2Former decoder, fine-tuned on the ADE20K dataset with 150
semantic classes. The resulting dataset, called MARV (Mobile AR
Vision) dataset, contains 83K pose-labeled images with pixel-level
depth and semantics. We excluded the images used for training the
MLPs in patch flow estimation and conducted experiments on the
remaining 58K test images.

Models. We used two VFMs in Table 1, both utilizing a DINOv2
(ViT-Small) encoder. For the decoder generating final predictions,
we used the official DPT for metric depth estimation (MDE), and
re-implemented Mask2Former for semantic segmentation (SS) to

ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

�
�
	 � � �

�
	 � � �

�
	 � � �

�
	 � �

�

� �

� �

� �

� �

� � �

�
�

�
��

�
�

� 	 � � � � � � � � � � �
 � � � � � �
 � � � � � � �
 � �

 � � � � � � � �
 � � � � � � � �

(a) Deadline success rate

� � � � � � � � � � � � � 	 	 �
�

� �

� �

 �

� �

� � � � � 	 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

�
�

��
	

�
�

��
�

�

� � � � � � �

� � � � � � �

 � � � � � �

� � � � � � � � � �

(b) End-to-end latency on S24

Figure 12: DSR and end-to-end latency.

�
�
� � � �

�
� � � �

�
� � � �

�
� � �

�

�

�

�

�

� 	 � � � � � � � � � � �
 � � � � � �
 � � � � � � �
 � �

�
�

�
�

�	
��

�
�

	 � � � � �
 � �	 � � � � �
 � �

(a) Metric depth estimation

�
�
	 � � �

�
	 � � �

�
	 � � �

�
	 � �

� � �

� � �

� � �

� � �

� � �

� 	 � � � � � � � � � � �
 � � � � � �
 � � � � � � �
 � �

�
��

�
��

 � � � � � � � �
 � � � � � � � �

(b) Semantic segmentation

Figure 13: Visual prediction accuracy.

Input Image NPU-Only (RMSE: 2.61) MobiSR-Like (RMSE: 5.55) ARIA-Base (RMSE: 6.20) ARIA (RMSE: 1.64)

NPU-Only (mIoU: 0.25) MobiSR-Like (mIoU: 0.14) ARIA-Base (mIoU: 0.22) ARIA (mIoU: 0.41)Input Image

Figure 14: Example VFM predictions on MARV dataset with Samsung Galaxy S24 under 𝑳𝑻 = 33.3ms.

meet the memory constraints of mobile devices. These VFMs were
not fine-tuned on our MARV dataset, as the goal was to assess their
zero-shot accuracy on diverse AR scenes.

Metrics. For the evaluation, we used two metrics:
• Deadline success rate (DSR): DNN inference tasks in AR
applications have diverse latency requirements, considering
the constraints like device’s display refresh rate [27]. We
measured DSR as the ratio of frames that meet their latency
target 𝐿𝑇 for running inference tasks to the total number of
executed tasks during the experiments.

• Prediction accuracy: We used root mean squared error
(RMSE) for MDE and mean intersection over union (mIoU)
for SS as accuracy metrics. In real AR scenarios, frames with
missing inference deadlines negatively impact user expe-
riences, e.g., by disrupting virtual content rendering. Such
cases should be treated as failures (zero accuracy), but we
ignore these for a clearer comparison.

Baselines.We used three baselines for comparative analysis. All
baselines were implemented to meet a predefined latency target 𝐿𝑇
on a given device. We selected 𝐿𝑇 values of 33.3 ms (30 FPS) and
66.6 ms (15 FPS), reflecting the stringent latency requirements of
mobile AR applications. The baselines include:

• NPU-Only: A single-processor baseline that relies on NPU
FP16 operations. The input resolutions were decided based
on the profiled latency and 𝐿𝑇 . We did not consider GPU-
based baseline because the resolutions adhering to the strict
𝐿𝑇 settings on GPU were no larger than those on NPU, as
shown in Figure 2b.

• MobiSR-Like: MobiSR [29] was originally designed for
super-resolution tasks but can be generalized to other vi-
sion tasks. We modified MobiSR to process image blocks
using different mobile processors except for CPU due to its
excessive VFM inference latency. Image blocks are allocated
to the processors based on scene dynamicity, i.e., the number
of dynamic patches.

• ARIA-Base: A baseline version of ARIA without its solu-
tions, where the overview is shown in Figure 5. For dy-
namic region identification, this baseline utilizes image block
matching [55]. The latest prediction from GPU is aligned to
the current frame using simple 2D planar transformation
and the NPU’s results on dynamic regions are merged using
bilinear interpolation.

6.2 Overall Performance
Deadline success rate. We analyzed DSR across different devices
and latency targets, as shown in Figure 12a. We only reported DSR
for MDE, as no significant differences were observed between MDE
and SS. The results indicated that MobiSR-Like and ARIA-Base
exhibited lower DSRs compared to other methods. MobiSR-Like
missed the deadline for 93.1–97.7% of frames under different set-
tings. For each frame, MobiSR-Like offloads the inference tasks of
some image blocks to GPU. As shown in Figure 12b, GPU execu-
tion caused thermal throttling, rapidly increasing the end-to-end
latency—the total time required to generate the final result for each
frame. In contrast, the end-to-end latencies of ARIA-Base were de-
cided by CPU and NPU, eliminating the effects of GPU performance
degradation through concurrent execution. However, it processes

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

� � �
 � � � � � � �

� � � � � � �

� 	 � � 	 �
 � � �

� 	 � � 	 �
 � � � � �

� 	 � � 	 �
 � � � � � � �

� 	 � � 	 �
 � � � � � � � � � � � 	 � � 	 �

� � � 	
 �

� � � � � � �
 �

� � � � � � � � � � � 	 � �
 � � �

 � � 	 � �

Figure 15: Comparison of DSR, MDE accu-
racy, and SS accuracy achieved by ARIA
and its variants on Samsung Galaxy S22
under 𝑳𝑻 = 33.3ms.

� �

 �

� �

� � �

�
�

�

�

�
�

��
�

�
�

� � � � � � � � � 	 � � � � � �

�

� � �

� � �

� � �

� � �

� � � �

�
�

�

�
��

�
��

�

�

�
�

� � � � � � � � � 	 � � � � � � �

� � 	 � � � � � � � � � � � �

� � � �

� � � � �

� � � �

� � � � � � � � � 	 � � � � � � �

�
�

�
�

��
��

�
�

�	
�

�
�

�

� � � � � � � � �
 � � 	 � 	 � �
�

� � �

� � �

� � �

� � �

	 � �

� � � � � � � �

	
�

��
�

�
�

��
�

�
� � 	 � � � � �
 � � � � � � � � � 	 � � � � �
 � �

� � � � � � � �
 � � � � � � � � � � � � � � � �
 � �

Figure 16: Traces of GPU temperature,
GPU frequency, resolution level for
GPU execution, and latency on Samsung
Galaxy S24 under 𝑳𝑻 = 33.3ms.

� � �

� � �

� � 	

� � �

� �

� � �

�
�

�
�

��
��

�
�

�

�

�
�

	

�
�

�
�

� � � �

� � � � �

� � � �

� � � � �

�
�

�
�

��
�

�

��

�
�
�

�

� � � � �
 � � � � � �

� �

� � �

� � 	

� � �

� � � � � � � �

�
�

�
�

�	
��

�
� � � � � � � � � 	 � � � � � � �

Figure 17: Sampled traces of camera mo-
tion magnitude, resolution level for GPU
execution, and MDE accuracy on Sam-
sung Galaxy S24 under 𝑳𝑻 = 33.3ms.

computationally intensive tasks like image block matching [55] for
dynamic region identification using CPU (e.g., 8–10 ms on Galaxy
S24). Mobile CPUs are also prone to thermal issues, where the ef-
fects are exacerbated by heat generation from GPU [37]. During
runtime, this resulted in 2.4% of frames failing to meet the strict 33.3
ms deadline on Galaxy S24. ARIA, on the other hand, achieved an
average DSR of 99.9% across all settings. By minimizing CPU over-
head associated with dynamic region identification, ARIA ensured
consistent performance under stringent deadlines.

Visual prediction accuracy.We validated the visual prediction
accuracy of MDE and SS, as shown in Figure 13. As we discussed
in Section 2.3, maintaining zero-shot capabilities of VFMs requires
full-frame floating-point execution. However, the limited capacity
of NPU-Only to handle large-scale attention operations necessitates
compromises in image resolutions to meet the latency constraints,
e.g., 294×350 for MDE on Galaxy S24. Image downscaling leads to
the loss of fine-grained details like object edges in final predictions,
as shown in Figure 14. MobiSR-Like, which provides low-resolution
predictions in a block granularity, undermines the global process-
ing capabilities of VFMs and therefore resulted in severe visual
inconsistencies, as illustrated in the example predictions on MARV
dataset. Consequently, MobiSR-Like showed the lowest average
accuracy across all tested configurations. ARIA overcomes these
issues by offloading full-frame, high-resolution operations to GPU
while leveraging NPU to provide globally aligned predictions on
dynamic regions. Compared to NPU-Only and MobiSR-Like, ARIA
improved accuracy by 27.6–33.4% and 45.3–50.0% for MDE and
30.5–36.7% and 47.2–72.3% for SS, respectively.

Meanwhile, ARIA-Base struggled to deliver visually consistent
predictions, as shown in Figure 14. Specifically, we observed a sig-
nificant accuracy loss with Galaxy S22 under 33.3 ms latency target,
due to the device’s limited computing capabilities. Tomeet this strin-
gent latency requirement, ARIA-Base relied on lower-resolution

predictions for processing dynamic regions using NPU. Also, its
inefficiency in dynamic region identification further reduced the
latency budget allocated for handling these regions, resulting in an
extremely low resolution of 168×168 for MDE.

6.3 Ablation Study
To further analyze the effectiveness of three key solutions proposed
in ARIA, we conducted an ablation study using Galaxy S22 with a
latency target of 33.3 ms, which is the most challenging setup in our
experiment. We isolated and evaluated the solutions incrementally
added to ARIA-Base, as shown in Figure 15.

By applying dynamic region identification and tracking (S1), we
observed improvements in DSR. The moderate enhancement, re-
ducing the missing frames from 5.0% to 0.009%, is crucial, as such
delayed frames are highly noticeable to users in subsequent AR func-
tionalities [27], adversely affecting the immersive experience. The
reduced latency is mainly attributed to the efficient dynamic region
identification, which leverages low-dimensional embedding feature
maps. Compared to ARIA-Base, this method also improved accuracy
by 20.0% for MDE and 13.4% for SS. By employing a fine-grained
and precise identification method, it minimized the inclusion of
irrelevant static regions and generated predictions on dynamic re-
gions using NPU, a crucial factor for enhancing accuracy. Further
incorporating both spatio-temporal alignment modules (S2) and
execution scheduler (S3) proposed in ARIA improved accuracy by
34.0% for MDE and 35.6% for SS, demonstrating the efficacy of our
system design.

6.4 System Robustness
ARIA adjusts the execution of GPU and NPU to meet the accu-
racy and latency requirements of user applications under varying
runtime conditions. To analyze ARIA’s robustness, we collected
runtime traces on Galaxy S24 with a latency target of 33.3 ms. The

ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

Input Image
(Large displacement in motorcycle)

Motion vector-based priority
w/o adaptive padding

Motion vector-based priority
w/ adaptive padding (ARIA)

Random priority
(outdated prediction in motorcycle)

Figure 18: Efficacy of priority-based NPU allocation.

traces were based on a 600-second video in MARV dataset, captur-
ing traversal across a diverse range of environments. As shown in
Figure 16, ARIAmaintains stable, low-latency performance through-
out the entire sequence. While ARIA-Base quickly heated GPU and
suffered from subsequent performance degradation, ARIA kept the
temperature lower and prevented sudden performance drops by
adaptive resolution scaling for full-frame GPU execution. Moreover,
as shown in Figure 17, ARIA’s resolution scaling effectively man-
aged varying camera motion, preserving high prediction accuracy
even under rapid pose changes. In contrast, ARIA-Base continued
to rely on a high-resolution input (Base) for GPU execution, causing
the latest full-frame prediction to be outdated, thereby reducing
accuracy under these conditions. The delay was further exacerbated
by thermal throttling, leading to temporal misalignment between
GPU and NPU outputs, as shown in Figure 14.

ARIA’s priority-based NPU allocation ensures that the most dy-
namically changing regions, such as fast-moving objects, receive
timely updates, as shown in Figure 18. By ranking dynamic regions
according to their motion vectors, ARIA focused its limited NPU
execution cycles to provide up-to-date predictions on areas that
contribute most to user discomfort if left outdated, i.e., a motorcycle
in Figure 18. When random priority is applied, however, predic-
tions for these areas may become stale and visually misaligned.
ARIA further integrates object motion–aware adaptive padding
with our priority-based approach to mitigate the issues arising
from incomplete coverage.

6.5 Runtime Overhead
Lastly, we analyzed the runtime overhead of ARIA. Figure 19 shows
the end-to-end latency breakdown on Galaxy S24. Although ARIA’s
spatio-temporal alignment modules introduced some latency over-
head, primarily due to patch flow estimation, the dynamic region
identification and execution scheduling methods were designed
to be efficient, resulting in negligible additional latency. Under a
relaxed latency target of 66.6 ms, the number of NPU’s execution
cycles for the dynamic region encoder is increased, dominating the
end-to-end latency. For instance, the number of cycles under the
latency target of 66.6 ms is 4, compared to 1 cycle under 33.3 ms.
This increase in cycles is the primary factor behind the accuracy
improvements shown in Figure 13, as the extended cycles often

�
�
� � �

�
�
�

� � � � � � � � � 	 �
 �

� � � � � � � � � � �

� � � � � � � � � � � � � �
 � � � � � � � 	 � 	 �
 � � � � �

� � � � � � � � � � � � � � � 	 �
 � � � � � � 	 �
 �

Figure 19: Breakdown of end-to-end latency on Samsung
Galaxy S24 with different 𝑳𝑻 settings.

fully capture the dynamic regions, even under conditions of high
scene dynamicity.

7 Related Work
Domain adaptation for mobile DNN inference.Domain adapta-
tion is an emerging technique that updates DNN model parameters
to adapt to environmental shifts. This is particularly critical for
maintaining the robustness of DNNs in applications running on mo-
bile platforms, such as robots or AR devices, where the environment
is constantly changing. Supervised adaptation techniques [5, 14, 57]
apply model fine-tuning based on labels from a few data samples
in unseen domains. To acquire labels of unseen data, EdgeFM [57]
proposes to leverage foundation models (FM) on a cloud server,
transferring their knowledge to a model deployed on edge devices.
Recent adaptation methods [10, 43, 47, 48] have shown that models
can adapt to domain shifts in an unsupervised manner without
requiring labeled data. AdaShadow [10] is a pioneering work that
applies such adaptation techniques to latency-critical applications
like mobile AR. However, as recent mobile applications increasingly
demand high-performance models with large numbers of param-
eters, fine-tuning can introduce unacceptable latency overheads.
As a promising alternative, there is a growing effort to deploy FMs
directly on mobile devices to enable effective zero-shot adaptation
without the need for fine-tuning.

On-device inference of foundation models. Along with the
success of FMs such as Large Language Models (LLMs), private,
on-device inference of these models has been recently gaining at-
tention. Initial efforts have relied on model compression techniques
such as pruning [11, 34], knowledge distillation [45, 50, 51, 63],
and quantization [8, 13, 32, 59]. However, compressing FMs to a
mobile scale introduces the risk of diminishing their zero-shot ca-
pabilities. Post-training quantization [13, 59] alleviates the issue
through calibration using data samples in the target domain but
requires continuous re-calibration to cope with the environmental
shifts. Early-exit [53, 67] or Mixture-of-Experts [12, 62] process
only necessary components in foundational models, reducing the
redundant computations. These methods, however, require addi-
tional deployment costs customizing FMs, e.g., training early-exit
layers. While many of these solutions emphasize algorithmic op-
timization, it is equally important to consider system-level char-
acteristics (e.g., thermal effects) and opportunities (e.g., hardware
accelerators) to enhance the processing efficiency of FMs deployed
on mobile devices [25]. In contrast to prior systems [54, 56] that
primarily target generative FMs such as LLMs, our work focuses
on discriminative vision tasks—like depth estimation and semantic
segmentation—that are critical for mobile AR applications.

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

On-device inference acceleration using heterogeneous mo-
bile processors. A line of works [21, 22, 31, 38] utilizes heteroge-
neous mobile processors to accelerate the DNN inference work-
loads. FYE-SR [19] splits the model computations into GPU-based
floating-point operations and NPU-based integer operations, ac-
cording to their sensitivity to quantization. Although this approach
is promising, extension to ARIA requires much effort to minimize
the possible accuracy drops of quantization-sensitive VFMs and ViT
switching overheads between processors. MobiSR [29] splits the
input image, rather than model layers, into blocks and judiciously
processes them using multiple processors, but ignores visual quality
loss due to the inconsistency in decoupled prediction results.

Selective and adaptive inference for optimized resource uti-
lization. Selective inference schemes [20, 55, 60, 61] reduce infer-
ence latency by applying DNN computations to sample frames and
reusing the results for subsequent frames. NEMO [60] employs
this scheme to specifically accelerate super-resolution-enhanced
video streaming using codec information. DeepCache [55] reuses
the cached intermediate results of DNNs, instead of final outputs, fo-
cusing on reusable regions identified through image blockmatching.
ARIA aligns with this method but enhances efficiency by employing
finer-grained identification of non-reusable dynamic regions and
offloading them to NPU for processing. Additionally, ARIA relates
to adaptive inference frameworks [23, 26, 27, 49], which prioritize
DNN computations for critical entities such as fast-moving objects
or complex scenes, further optimizing resource utilization.

8 Discussion and Future Work
Generalizability and hardware dependence. Although our ex-
periments focused on Qualcomm’s Snapdragon platforms—chosen
for their wide adoption and support for floating-point NPU opera-
tions—ARIA’s core design is not restricted to a single hardware ven-
dor. We believe that its parallel and selective inference approach can
be generalized to any mobile device with heterogeneous computing
processors. While higher-capacity NPUs may better accommodate
high-resolution FP16 operations of VFMs, they do not obviate the
need for heterogeneous processing, particularly as the size of VFMs
continues to grow. Additionally, not all mobile devices include
NPUs; ARIA can leverage other low-power processors (e.g., DSPs
or CPU little cores) when available.

Multi-task visual prediction support. The current ARIA im-
plementation is optimized for accelerating inference of a single
VFM dedicated to a specific task, such as depth estimation or se-
mantic segmentation. However, real-world AR applications often
require simultaneous predictions from multiple vision tasks—for
example, combining depth and semantics to provide both spatial
and contextual understandings. Supporting such multi-task sce-
narios introduces new challenges in system design, particularly
under stringent latency constraints. A promising future direction
is to share a VFM encoder across tasks or to selectively activate
task-specific components (e.g., decoders or experts), thereby mini-
mizing redundant computations. Additionally, the scheduler could
be extended to incorporate task-aware accuracy-latency trade-offs,
dynamically prioritizing tasks based on the AR context—such as
prioritizing semantic cues for navigation vs. depth for object place-
ment—while managing hardware resource contention. Ensuring

robust and efficient multi-task inference, without compromising
ARIA’s real-time performance, is a critical step toward realizing
practical and fully-featured mobile AR systems.

9 Conclusion
This paper proposes ARIA, a novel system for optimizing the on-
device inference of VFMs for mobile AR applications. By lever-
aging the unique characteristics of heterogeneous mobile proces-
sors, ARIA combines GPU-based full-frame predictions with NPU-
accelerated updates on dynamic regions, achieving both high ac-
curacy and real-time performance. Key innovations include fine-
grained dynamic region identification and tracking, spatio-temporal
feature alignment of decoupled predictions, and adaptive execution
scheduling to handle runtime variations. Extensive experiments
have shown that ARIA outperforms its baselines under diverse con-
ditions in environments and devices, paving the way for scalable,
immersive mobile AR applications.

Acknowledgments
We sincerely thank the anonymous shepherd and the reviewers for
their valuable feedback in improving this paper. This work was sup-
ported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. RS-2024-00344323)
and the Ministry of Education (No. RS-2024-00351030). This work
was also supported by Institute of Information & Communications
Technology Planning & Evaluation (IITP) grant funded by MSIT
(No. RS-2018-II180532).

References
[1] ARCore. 2024. Camera. https://developers.google.com/ar/reference/java/com/

google/ar/core/Camera.
[2] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. 2021. Adabins: Depth

estimation using adaptive bins. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 4009–4018.

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. 2021. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF international conference on
computer vision. 9650–9660.

[4] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig
Adam. 2018. Encoder-decoder with atrous separable convolution for semantic
image segmentation. In Proceedings of the European conference on computer vision
(ECCV). 801–818.

[5] Minghao Chen, Hongyang Xue, and Deng Cai. 2019. Domain adaptation for se-
mantic segmentation with maximum squares loss. In Proceedings of the IEEE/CVF
international conference on computer vision. 2090–2099.

[6] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit
Girdhar. 2022. Masked-attention mask transformer for universal image segmen-
tation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 1290–1299.

[7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.
The cityscapes dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3213–3223.

[8] Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei,
and Xianglong Liu. 2022. Towards Accurate Post-Training Quantization for
Vision Transformer. In Proceedings of the 30th ACM International Conference on
Multimedia (Lisboa, Portugal) (MM ’22). Association for Computing Machinery,
New York, NY, USA, 5380–5388. https://doi.org/10.1145/3503161.3547826

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[10] Cheng Fang, Sicong Liu, Zimu Zhou, Bin Guo, Jiaqi Tang, Ke Ma, and Zhi-
wen Yu. 2024. AdaShadow: Responsive Test-time Model Adaptation in Non-
stationary Mobile Environments. In Proceedings of the 22nd ACM Conference

https://developers.google.com/ar/reference/java/com/google/ar/core/Camera
https://developers.google.com/ar/reference/java/com/google/ar/core/Camera
https://doi.org/10.1145/3503161.3547826

ARIA: Optimizing Vision Foundation Model Inference on
Heterogeneous Mobile Processors for Augmented Reality MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA

on Embedded Networked Sensor Systems (Hangzhou, China) (SenSys ’24). As-
sociation for Computing Machinery, New York, NY, USA, 295–308. https:
//doi.org/10.1145/3666025.3699339

[11] Matteo Farina, Massimiliano Mancini, Elia Cunegatti, Gaowen Liu, Giovanni
Iacca, and Elisa Ricci. 2024. MULTIFLOW: Shifting Towards Task-Agnostic
Vision-Language Pruning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 16185–16195.

[12] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity. Journal
of Machine Learning Research 23, 120 (2022), 1–39.

[13] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. 2022. Gptq:
Accurate post-training quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323 (2022).

[14] Yaroslav Ganin and Victor Lempitsky. 2015. Unsupervised domain adaptation by
backpropagation. In International conference on machine learning. PMLR, 1180–
1189.

[15] Google. 2024. ARCore. https://developers.google.com/ar.
[16] Google. 2024. GPU delegates for LiteRT. https://ai.google.dev/edge/litert/

performance/gpu.
[17] Google. 2024. LiteRT overview. https://ai.google.dev/edge/litert.
[18] Google. 2024. Scene Semantics API. https://developers.google.com/ar/develop/

scene-semantics.
[19] Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao. 2024. Perceptual-Centric

Image Super-Resolution using Heterogeneous Processors on Mobile Devices.
In Proceedings of the 30th Annual International Conference on Mobile Comput-
ing and Networking (Washington D.C., DC, USA) (ACM MobiCom ’24). Asso-
ciation for Computing Machinery, New York, NY, USA, 1361–1376. https:
//doi.org/10.1145/3636534.3690698

[20] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon: Mo-
bile GPU-based Deep Learning Framework for Continuous Vision Applica-
tions. In Proceedings of the 15th Annual International Conference on Mobile Sys-
tems, Applications, and Services (Niagara Falls, New York, USA) (MobiSys ’17).
Association for Computing Machinery, New York, NY, USA, 82–95. https:
//doi.org/10.1145/3081333.3081360

[21] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon, Changjin Jeong,
Youngki Lee, and Byung-Gon Chun. 2022. Band: coordinated multi-DNN in-
ference on heterogeneous mobile processors. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services (Portland,
Oregon) (MobiSys ’22). Association for Computing Machinery, New York, NY,
USA, 235–247. https://doi.org/10.1145/3498361.3538948

[22] Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren, and Yaoxue
Zhang. 2022. CoDL: efficient CPU-GPU co-execution for deep learning inference
on mobile devices. In Proceedings of the 20th Annual International Conference
on Mobile Systems, Applications and Services (Portland, Oregon) (MobiSys ’22).
Association for Computing Machinery, New York, NY, USA, 209–221. https:
//doi.org/10.1145/3498361.3538932

[23] Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. 2021. Flexible
high-resolution object detection on edge devices with tunable latency. In Proceed-
ings of the 27th Annual International Conference on Mobile Computing and Net-
working (New Orleans, Louisiana) (MobiCom ’21). Association for Computing Ma-
chinery, New York, NY, USA, 559–572. https://doi.org/10.1145/3447993.3483274

[24] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
2023. Segment anything. In Proceedings of the IEEE/CVF international conference
on computer vision. 4015–4026.

[25] Stefanos Laskaridis, Kleomenis Katevas, Lorenzo Minto, and Hamed Haddadi.
2024. MELTing Point: Mobile Evaluation of Language Transformers. In Pro-
ceedings of the 30th Annual International Conference on Mobile Computing and
Networking (Washington D.C., DC, USA) (ACM MobiCom ’24). Association for
Computing Machinery, New York, NY, USA, 890–907. https://doi.org/10.1145/
3636534.3690668

[26] Jeho Lee, Chanyoung Jung, Jiwon Kim, and Hojung Cha. 2024. Panopticus:
Omnidirectional 3D Object Detection on Resource-constrained Edge Devices. In
Proceedings of the 30th Annual International Conference on Mobile Computing and
Networking (Washington D.C., DC, USA) (ACM MobiCom ’24). Association for
Computing Machinery, New York, NY, USA, 1207–1221. https://doi.org/10.1145/
3636534.3690688

[27] Jingyu Lee, Hyunsoo Kim, Minjae Kim, Byung-Gon Chun, and Youngki Lee.
2024. Maestro: The Analysis-Simulation Integrated Framework for Mixed Reality.
In Proceedings of the 22nd Annual International Conference on Mobile Systems,
Applications and Services (Minato-ku, Tokyo, Japan) (MobiSys ’24). Association
for Computing Machinery, New York, NY, USA, 99–112. https://doi.org/10.1145/
3643832.3661891

[28] Kyu-Yul Lee and Jae-Young Sim. 2020. Warping residual based image stitching
for large parallax. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 8198–8206.

[29] Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, and
Nicholas D. Lane. 2019. MobiSR: Efficient On-Device Super-Resolution through

Heterogeneous Mobile Processors. In The 25th Annual International Conference
on Mobile Computing and Networking (Los Cabos, Mexico) (MobiCom ’19). As-
sociation for Computing Machinery, New York, NY, USA, Article 54, 16 pages.
https://doi.org/10.1145/3300061.3345455

[30] Danyang Li, Jingao Xu, Zheng Yang, Qian Zhang, Qiang Ma, Li Zhang, and
Pengpeng Chen. 2022. Motion inspires notion: self-supervised visual-LiDAR
fusion for environment depth estimation. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services (Portland,
Oregon) (MobiSys ’22). Association for Computing Machinery, New York, NY,
USA, 114–127. https://doi.org/10.1145/3498361.3538918

[31] Neiwen Ling, Xuan Huang, Zhihe Zhao, Nan Guan, Zhenyu Yan, and Guoliang
Xing. 2023. BlastNet: Exploiting Duo-Blocks for Cross-Processor Real-Time DNN
Inference. In Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems (Boston, Massachusetts) (SenSys ’22). Association for Computing
Machinery, New York, NY, USA, 91–105. https://doi.org/10.1145/3560905.3568520

[32] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma, and Wen Gao. 2021.
Post-training quantization for vision transformer. In Proceedings of the 35th
International Conference on Neural Information Processing Systems (NIPS ’21).
Curran Associates Inc., Red Hook, NY, USA, Article 2152, 12 pages.

[33] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. 2019. Mediapipe: A framework for building perception pipelines. arXiv
preprint arXiv:1906.08172 (2019).

[34] Wei Niu, Xiaolong Ma, Sheng Lin, Shihao Wang, Xuehai Qian, Xue Lin, Yanzhi
Wang, and Bin Ren. 2020. PatDNN: Achieving Real-Time DNN Execution on
Mobile Devices with Pattern-based Weight Pruning. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). Association for
Computing Machinery, New York, NY, USA, 907–922. https://doi.org/10.1145/
3373376.3378534

[35] onnxruntime. 2024. QNN Execution Provider. https://onnxruntime.ai/docs/
execution-providers/QNN-ExecutionProvider.html.

[36] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. 2023. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193 (2023).

[37] Jihoon Park, Seokjun Lee, and Hojung Cha. 2018. App-Oriented Thermal
Management of Mobile Devices. In Proceedings of the International Symposium
on Low Power Electronics and Design (Seattle, WA, USA) (ISLPED ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 36, 6 pages.
https://doi.org/10.1145/3218603.3218622

[38] Keondo Park, You Rim Choi, Inhoe Lee, and Hyung-Sin Kim. 2023. PointSplit:
Towards On-device 3DObject Detection with Heterogeneous Low-power Acceler-
ators. In Proceedings of the 22nd International Conference on Information Processing
in Sensor Networks (San Antonio, TX, USA) (IPSN ’23). Association for Computing
Machinery, New York, NY, USA, 67–81. https://doi.org/10.1145/3583120.3587045

[39] Qualcomm. 2024. Qualcomm Linux TensorFlow Lite Runtime Reference. https://
docs.qualcomm.com/bundle/publicresource/topics/80-70014-54/overview.html.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PmLR, 8748–8763.

[41] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. 2021. Vision transformers
for dense prediction. In Proceedings of the IEEE/CVF international conference on
computer vision. 12179–12188.

[42] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel
Bautista, Nathan Paczan, Russ Webb, and Joshua M Susskind. 2021. Hypersim:
A photorealistic synthetic dataset for holistic indoor scene understanding. In
Proceedings of the IEEE/CVF international conference on computer vision. 10912–
10922.

[43] Junha Song, Jungsoo Lee, In So Kweon, and Sungha Choi. 2023. Ecotta: Memory-
efficient continual test-time adaptation via self-distilled regularization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
11920–11929.

[44] stereolabs. 2024. ZED 2. https://www.stereolabs.com/products/zed-2.
[45] Ximeng Sun, Pengchuan Zhang, Peizhao Zhang, Hardik Shah, Kate Saenko,

and Xide Xia. 2023. Dime-fm: Distilling multimodal and efficient foundation
models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 15521–15533.

[46] Stylianos I. Venieris, Mario Almeida, Royson Lee, and Nicholas D. Lane. 2024.
NAWQ-SR: A Hybrid-Precision NPU Engine for Efficient On-Device Super-
Resolution. IEEE Transactions on Mobile Computing 23, 3 (2024), 2367–2381.
https://doi.org/10.1109/TMC.2023.3255822

[47] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor
Darrell. 2020. Tent: Fully test-time adaptation by entropy minimization. arXiv
preprint arXiv:2006.10726 (2020).

[48] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. 2022. Continual test-time
domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision

https://doi.org/10.1145/3666025.3699339
https://doi.org/10.1145/3666025.3699339
https://developers.google.com/ar
https://ai.google.dev/edge/litert/performance/gpu
https://ai.google.dev/edge/litert/performance/gpu
https://ai.google.dev/edge/litert
https://developers.google.com/ar/develop/scene-semantics
https://developers.google.com/ar/develop/scene-semantics
https://doi.org/10.1145/3636534.3690698
https://doi.org/10.1145/3636534.3690698
https://doi.org/10.1145/3081333.3081360
https://doi.org/10.1145/3081333.3081360
https://doi.org/10.1145/3498361.3538948
https://doi.org/10.1145/3498361.3538932
https://doi.org/10.1145/3498361.3538932
https://doi.org/10.1145/3447993.3483274
https://doi.org/10.1145/3636534.3690668
https://doi.org/10.1145/3636534.3690668
https://doi.org/10.1145/3636534.3690688
https://doi.org/10.1145/3636534.3690688
https://doi.org/10.1145/3643832.3661891
https://doi.org/10.1145/3643832.3661891
https://doi.org/10.1145/3300061.3345455
https://doi.org/10.1145/3498361.3538918
https://doi.org/10.1145/3560905.3568520
https://doi.org/10.1145/3373376.3378534
https://doi.org/10.1145/3373376.3378534
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html
https://onnxruntime.ai/docs/execution-providers/QNN-ExecutionProvider.html
https://doi.org/10.1145/3218603.3218622
https://doi.org/10.1145/3583120.3587045
https://docs.qualcomm.com/bundle/publicresource/topics/80-70014-54/overview.html
https://docs.qualcomm.com/bundle/publicresource/topics/80-70014-54/overview.html
https://www.stereolabs.com/products/zed-2
https://doi.org/10.1109/TMC.2023.3255822

MobiSys ’25, June 23–27, 2025, Anaheim, CA, USA C. Jung, J. Lee, G. Kim, J. Kim, S. Park, H. Cha

and Pattern Recognition. 7201–7211.
[49] Weijun Wang, Liang Mi, Shaowei Cen, Haipeng Dai, Yuanchun Li, Xiaoming Fu,

and Yunxin Liu. 2024. Region-based content enhancement for efficient video
analytics at the edge. arXiv preprint arXiv:2407.16990 (2024).

[50] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. MINILM: deep self-attention distillation for task-agnostic compression
of pre-trained transformers. In Proceedings of the 34th International Conference
on Neural Information Processing Systems (Vancouver, BC, Canada) (NIPS ’20).
Curran Associates Inc., Red Hook, NY, USA, Article 485, 13 pages.

[51] Yixuan Wei, Han Hu, Zhenda Xie, Ze Liu, Zheng Zhang, Yue Cao, Jianmin Bao,
Dong Chen, and Baining Guo. 2023. Improving clip fine-tuning performance. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 5439–
5449.

[52] Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze.
2019. Fastdepth: Fast monocular depth estimation on embedded systems. In 2019
International Conference on Robotics and Automation (ICRA). IEEE, 6101–6108.

[53] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020. Dee-
BERT: Dynamic early exiting for accelerating BERT inference. arXiv preprint
arXiv:2004.12993 (2020).

[54] Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, Gang Huang, Mengwei Xu, and
Xuanzhe Liu. 2025. Fast On-device LLM Inference with NPUs. In Proceedings of
the 30th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1 (Rotterdam, Netherlands) (ASPLOS
’25). Association for Computing Machinery, New York, NY, USA, 445–462. https:
//doi.org/10.1145/3669940.3707239

[55] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu.
2018. DeepCache: Principled Cache for Mobile Deep Vision. In Proceedings of the
24th Annual International Conference on Mobile Computing and Networking (New
Delhi, India) (MobiCom ’18). Association for Computing Machinery, New York,
NY, USA, 129–144. https://doi.org/10.1145/3241539.3241563

[56] Zhenliang Xue, Yixin Song, Zeyu Mi, Xinrui Zheng, Yubin Xia, and Haibo Chen.
2024. Powerinfer-2: Fast large language model inference on a smartphone. arXiv
preprint arXiv:2406.06282 (2024).

[57] Bufang Yang, Lixing He, Neiwen Ling, Zhenyu Yan, Guoliang Xing, Xian Shuai,
Xiaozhe Ren, and Xin Jiang. 2024. EdgeFM: Leveraging Foundation Model for
Open-set Learning on the Edge. In Proceedings of the 21st ACM Conference on
Embedded Networked Sensor Systems (Istanbul, Turkiye) (SenSys ’23). Association
for Computing Machinery, New York, NY, USA, 111–124. https://doi.org/10.
1145/3625687.3625793

[58] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Heng-
shuang Zhao. 2024. Depth anything: Unleashing the power of large-scale unla-
beled data. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10371–10381.

[59] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Con-
glong Li, and Yuxiong He. 2022. ZeroQuant: Efficient and Affordable
Post-Training Quantization for Large-Scale Transformers. In Advances in
Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 27168–27183. https://proceedings.neurips.cc/paper_files/paper/2022/file/
adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf

[60] Hyunho Yeo, Chan Ju Chong, Youngmok Jung, Juncheol Ye, and Dongsu Han.
2020. NEMO: enabling neural-enhanced video streaming on commodity mobile
devices. In Proceedings of the 26th Annual International Conference on Mobile
Computing and Networking (London, United Kingdom) (MobiCom ’20). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 28, 14 pages.
https://doi.org/10.1145/3372224.3419185

[61] Hyunho Yeo, Hwijoon Lim, Jaehong Kim, Youngmok Jung, Juncheol Ye, and
Dongsu Han. 2022. NeuroScaler: neural video enhancement at scale. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIG-
COMM ’22). Association for Computing Machinery, New York, NY, USA, 795–811.
https://doi.org/10.1145/3544216.3544218

[62] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei
Xu. 2023. Edgemoe: Fast on-device inference of moe-based large language models.
arXiv preprint arXiv:2308.14352 (2023).

[63] Chaoning Zhang, Dongshen Han, Yu Qiao, Jung Uk Kim, Sung-Ho Bae, Seungkyu
Lee, and Choong Seon Hong. 2023. Faster segment anything: Towards lightweight
sam for mobile applications. arXiv preprint arXiv:2306.14289 (2023).

[64] Fan Zhang and Feng Liu. 2014. Parallax-tolerant image stitching. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 3262–3269.

[65] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, XiaogangWang, and Jiaya Jia. 2017.
Pyramid scene parsing network. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2881–2890.

[66] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. 2017. Scene parsing through ade20k dataset. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 633–641.

[67] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei.
2020. Bert loses patience: Fast and robust inference with early exit. Advances in
Neural Information Processing Systems 33 (2020), 18330–18341.

https://doi.org/10.1145/3669940.3707239
https://doi.org/10.1145/3669940.3707239
https://doi.org/10.1145/3241539.3241563
https://doi.org/10.1145/3625687.3625793
https://doi.org/10.1145/3625687.3625793
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://doi.org/10.1145/3372224.3419185
https://doi.org/10.1145/3544216.3544218

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Recent Advances in Vision Models
	2.2 Advantages of VFMs in Mobile AR
	2.3 VFM Inference on Mobile Processors
	2.4 Summary

	3 Opportunities and Challenges
	3.1 Opportunities
	3.2 Challenges

	4 Design of ARIA
	4.1 System Overview
	4.2 Transformer-guided Dynamic Region Identification and Tracking
	4.3 Dynamics-aware Spatio-temporal Alignment of Decoupled Predictions
	4.4 Execution Scheduling

	5 Implementation
	6 Evaluation
	6.1 Evaluation Setup
	6.2 Overall Performance
	6.3 Ablation Study
	6.4 System Robustness
	6.5 Runtime Overhead

	7 Related Work
	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References

